Breaking Path Symmetries on 4-Connected Grid Maps
نویسندگان
چکیده
Pathfinding systems that operate on regular grids are common in the AI literature and often used in real-time video games. Typical speed-up enhancements include reducing the size of the search space using abstraction, and building more informed heuristics. Though effective each of these strategies has shortcomings. For example, pathfinding with abstraction usually involves trading away optimality for speed. Meanwhile, improving on the accuracy of the well known Manhattan heuristic usually requires significant extra memory. We present a different kind of speedup technique based on the idea of identifying and eliminating symmetric path segments in 4-connected grid maps (which allow straight but not diagonal movement). Our method identifies rectangular rooms with no obstacles and prunes all interior nodes, leaving only a boundary perimeter. This process eliminates many symmetric path segments and results in grid maps which are often much smaller and consequently much faster to search than the original. We evaluate our technique on a range of different grid maps including a well known set from the popular video game Baldur’s Gate II. On our test data, A* can run up to 3.5 times faster on average. We achieve this without using any significant extra memory or sacrificing solution optimal-
منابع مشابه
Graph Pruning and Symmetry Breaking on Grid Maps
Pathfinding systems that operate on uniform-cost grid maps are common in the AI literature and application areas such as robotics and real-time video games. Typical speed-up enhancements in such contexts include reducing the size of the search space using abstraction [Botea et al., 2004] and developing new heuristics to more accurately guide search toward the goal [Sturtevant et al., 2009]. Tho...
متن کاملTRANSIT Routing on Video Game Maps
TRANSIT (Bast, Funke, and Matijevic 2006) is a fast and optimal technique for computing shortest path costs in road networks. It is attractive for its usually modest memory requirements and impressive running times. In this paper we give a first analysis of TRANSIT routing on a set of popular grid-based video-game benchmarks taken from the AI pathfinding literature. We show that in the presence...
متن کاملThe JPS Pathfinding System
We describe a pathfinding system based on Jump Point Search (JPS): a recent and very successful search strategy that performs symmetry breaking to speed up optimal pathfinding on grid maps. We first modify JPS for grid maps where corner-cutting moves are not allowed. We then describe JPS+: a new derivative search strategy that reformulates an input graph into an equivalent symmetry-reduced form...
متن کاملFast and Memory-Efficient Multi-Agent Pathfinding
Multi-agent path planning has been shown to be a PSPACEhard problem. Running a complete search such as A* at the global level is often intractable in practice, since both the number of states and the branching factor grow exponentially as the number of mobile units increases. In addition to the inherent difficulty of the problem, in many real-life applications such as computer games, solutions ...
متن کاملTRANSIT Routing on Video Game Map
TRANSIT (Bast, Funke, and Matijevic 2006) is a fast and optimal technique for computing shortest path costs in road networks. It is attractive for its usually modest memory requirements and impressive running times. In this paper we give a first analysis of TRANSIT routing on a set of popular grid-based video-game benchmarks taken from the AI pathfinding literature. We show that in the presence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010